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THEORY OF LARGE-STRAIN TORSION OF

PRISMATIC BODIES WITH MOMENT STRESSES

UDC 539.3A. A. Zelenina

The problem of the torsion and tension–compression of a prismatic bar with a stress-free lateral sur-
face is studied using three-dimensional elasticity theory for materials with moment stresses. A sub-
stitution is found that allows one to separate one variable in the nonlinear equilibrium equations
for a Cosserat continuum and boundary conditions on the lateral surface. This substitution reduces
the original spatial problem of the equilibrium of a micropolar body to a two-dimensional nonlinear
boundary-value problem for a plane region shaped like the cross section of the prismatic bar. Vari-
ational formulations of the two-dimensional problem for the section are given that differ in the sets
of varied functions and the constraints imposed on their boundary values.

Key words: large strains, moment stresses, nonlinear Saint Venant’s problem.

1. Reduction to Two-Dimensional Boundary-Value Problem. In the absence of mass forces and
moments, the system of equations governing the statics of a Cosserat nonlinear-elastic continuum [1, 2] comprises
the stress equilibrium equations

divD = 0, divG+ (Ct ·D)× = 0, (1.1)

the constitutive equations

D = P ·H, G = K ·H,

P =
∂W

∂Y
, K =

∂W

∂L
, W = W (Y, L),

(1.2)

and the geometrical relations

Y = C ·Ht, C = gradR, R = Xkik, L× E = −(gradH) ·Ht. (1.3)

Here D and G are the Piola-type stress and moment-stress tensors, respectively, P and K are the Kirchhoff-type
stress and moment-stress tensors, respectively, C is the strain gradient, H is the proper orthogonal microrotation
tensor characterizing the rotational degrees of freedom of particles of the Cosserat continuum,Xk (k = 1, 2, 3) are the
Cartesian (Eulerian) coordinates of the deformed body, ik are the coordinate unit vectors, Y is the strain measure,
L is the flexural-strain tensor, E is the unit tensor, and W is the specific free energy of the elastic material; div and
grad are the divergence and gradient operators in the Lagrangian coordinates, respectively [below, the Cartesian
coordinates of the reference configuration of the body xs (s = 1, 2, 3) are used as the Lagrangian coordinates], and
the subscript “×” in (1.1) denotes the vector invariant of the second-rank tensor. Substituting relations (1.2) and
(1.3) into (1.1), we obtain a system of six equations with unknown functions X1, X2, X3, and H and independent
variables x1, x2, and x3.

In the reference configuration, the elastic body is assumed to have the shape of a cylinder (prism) of arbitrary
cross section. The generatrices of the cylinder are parallel to the x3 axis and the coordinates x1 and x2 are reckoned
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in the cross-sectional plane. To reduce the three-dimensional problem of the nonlinear moment theory of elasticity to
the two-dimensional problem, we consider the following two-parameter family of strains of the Cosserat continuum:

X1 = u1(x1, x2) cosψx3 − u2(x1, x2) sinψx3,

X2 = u2(x1, x2) cosψx3 + u1(x1, x2) sinψx3, (1.4)

X3 = λx3 + w(x1, x2) (λ, ψ = const);

H(x1, x2, x3) = H0(x1, x2) ·Q(x3). (1.5)

Here H−1
0 = Ht

0, Q = i1 ⊗ e1 + i2 ⊗ e2 + i3 ⊗ i3 (e1 = i1 cosψx3 + i2 sinψx3 and e2 = −i1 sinψx3 + i2 cosψx3 are
the unit vectors), and H0 and Q are the proper orthogonal tensors. The geometrical meaning of representations
(1.4) and (1.5) is that the cross section of the prism at a distance x3 from the coordinate origin is subjected to a
certain plane strain defined by the functions u1 and u2 and to warping defined by the function w, rotates about
the bar axis through a finite angle ψx3, and moves a distance λx3 along the axis. Moreover, particles of the body
undergo microrotations specified by relation (1.5). Expressions (1.4) and (1.5) extend the representations of the
finite torsional deformations proposed in [3] to the case of a medium with moment stresses.

From (1.3)–(1.5), we obtain

C = C0(x1, x2) ·Q; (1.6)

Y = C0 ·Ht
0, L =

1
2

iα ⊗
(∂H0

∂xα
·Ht

0

)
×

+ ψi3 ⊗ i3 ·Ht
0, (1.7)

where

C0 =
∂uβ

∂xα
iα ⊗ iβ +

∂w

∂xα
iα ⊗ i3 − ψu2i3 ⊗ i1 + ψu1i3 ⊗ i2 + λi3 ⊗ i3 (α, β = 1, 2).

Because Q(0) = E, the following relations hold:

C0 = C(x1, x2, 0), H0 = H(x1, x2, 0).

According to (1.7), the strain measure Y and the flexural-strain tensor L do not depend on the coordinate x3. If the
elastic body is homogeneous along the coordinate x3, it follows from (1.2) that the stress and moment-stress tensors
P and K are functions of only the coordinates x1 and x2. The homogeneity of the body along the coordinate x3

implies that the specific free energy W depends explicitly on the coordinates x1 and x2 but does not depend
explicitly on the coordinate x3: W = W (Y, L, x1, x2) (in this case, the material can be anisotropic). For the body
homogeneous along the coordinate x3, Eqs. (1.2) and (1.5) yield

D(x1, x2, x3) = D0(x1, x2) ·Q(x3), G(x1, x2, x3) = G0(x1, x2) ·Q(x3). (1.8)

With allowance for (1.8), the equilibrium equations (1.1) for strains of the form (1.4), (1.5) become

∇ ·D0 + ψi3 ·D0 · e = 0; (1.9)

∇ ·G0 + ψi3 ·G0 · e+ (Ct
0 ·D0)× = 0. (1.10)

Here e = −E × i3 is the discriminant tensor and ∇ is a plane gradient operator that is written in Cartesian
coordinates as

∇ = i1
∂

∂x1
+ i2

∂

∂x2
.

Using the component representations of the tensors

C0 = Cskis ⊗ ik, D0 = Dskis ⊗ ik, G0 = Gskis ⊗ ik,

from Eqs. (1.9) and (1.10), we obtain the component form of the equilibrium equations for the torsion problem:

∂D11

∂x1
+
∂D21

∂x2
= ψD32,

∂D12

∂x1
+
∂D22

∂x2
= −ψD31,
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∂D13

∂x1
+
∂D23

∂x2
= 0;

(1.11)

∂G11

∂x1
+
∂G21

∂x2
− ψG32 + C12D13 + C22D23 + C32D33 − C13D12 − C23D22 − C33D32 = 0,

∂G12

∂x1
+
∂G22

∂x2
+ ψG31 + C13D11 + C23D21 + C33D31 − C11D13 − C21D23 − C31D33 = 0, (1.12)

∂G13

∂x1
+
∂G23

∂x2
+ C11D12 + C21D22 + C31D32 − C12D11 − C22D21 − C32D31 = 0.

The proper orthogonal tensor H0 can be expressed [4] in terms of the finite-rotation vector θ:

H0 =
1

4 + θ2
[(4 − θ2)E + 2θ ⊗ θ − 4E × θ]. (1.13)

Then, from Eqs. (1.2), (1.7), (1.8), and (1.13), it follows that Eqs. (1.11) and (1.12) constitute a system of six
scalar equations for three functions of two variables u1(x1, x2), u2(x1, x2), and w(x1, x2) and three components of
the vector θ: θk(x1, x2) = θ · ik (k = 1, 2, 3). In the case where a distributed force load f and a distributed moment
load m are applied to the lateral surface of the prism with the normal n = n1i1 + n2i2, the boundary conditions
on this surface are given by

n ·D = f , n ·G = m. (1.14)

We assume that the external-load vectors are written as f = f∗ · C and m = m∗ · C, where the vectors f∗

and m∗ do not depend on the coordinate x3. (For example, the vector f∗ does not depend on x3 in the case of a
hydrostatic pressure distributed uniformly over the lateral surface and the vector m∗ does not depend on x3 in the
case of a uniform moment load directed normally to the deformed lateral surface of the cylindrical body.) Then,
the boundary conditions (1.14) for strains of the form (1.4), (1.5) do not contain the variable x3 and, together with
Eqs. (1.9) and (1.10), constitute the two-dimensional boundary-value problem for a plane region shaped like the
cross section of the prism.

Thus, the assumptions (1.4) and (1.5) on the nature of the deformation of the prismatic bar reduce the original
three-dimensional nonlinear static problem for a Cosserat medium to a two-dimensional nonlinear boundary-value
problem.

Let the lateral surface of the bar be stress free, i.e., f = m = 0. The boundary-value problem for a plane
region σ shaped like the cross section of the bar comprises the equilibrium equations (1.9) and (1.10) and the
boundary conditions on ∂σ

n ·D0 = 0, n ·G0 = 0 (1.15)

[the tensors D0 and G0 in (1.9), (1.10), and (1.15) are expressed in terms of the unknown functions of two variables
u1, u2, w, and θ using the constitutive relations and formulas (1.3) and (1.7) and ψ and λ are specified constant
parameters].

Let u1, u2, w, and H0 be a certain solution of the boundary-value problem formulated above. One can show
that the functions

u∗1 = u1 cosω − u2 sinω, u∗2 = u1 sinω + u2 cosω, w∗ = w + d,

H∗
0 = H0 · (g cosω + e sinω + i3 ⊗ i3), g = E − i3 ⊗ i3

(1.16)

(ω and d are arbitrary real constants) satisfy Eqs. (1.9) and (1.10) and boundary conditions (1.15). The insensitivity
of the boundary-value problem of the cross section to the change of variables (1.16) implies that after deformation,
the location of the elastic body is determined with accuracy up to the rotation about the X3 axis and the translation
along this axis. This ambiguity of the solution can be eliminated by imposing the following additional conditions
on the unknown functions: ∫ ∫

σ

w dσ = 0,
∫ ∫

σ

(trH0 − 3) dσ = 0. (1.17)

In this case, the problem (1.9), (1.10), (1.15) has a unique solution.
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2. Forces and Moments Acting on the Ends of the Bar. The solution of the two-dimensional problem
formulated above for the bar cross section satisfies the equilibrium equations inside the body and the boundary
conditions on its lateral surface. The boundary conditions on the end surfaces of the cylinder x3 = const are satisfied
only approximately in the Saint-Venant integral sense by choosing the constants ψ and λ.

We determine the principal vector F and the principal moment M of the forces and moments acting in an
arbitrary cross section of a cylindrical body with a stress-free lateral surface subjected to torsional strain of the
form (1.4), (1.5). Using (1.8), we obtain

F (x3) =
∫ ∫

σ

i3 ·Ddσ = F1e1 + F2e2 + F3i3,

M(x3) =
∫ ∫

σ

[i3 ·G− i3 ·D × (u1e1 + u2e2 + λx3i3 + wi3)] dσ = M1e1 +M2e2 +M3i3,

(2.1)

where

Fk =
∫ ∫

σ

D3k dσ, M1 =
∫ ∫

σ

(G31 +D33u2 −D32w) dσ,

M2 =
∫ ∫

σ

(G32 +D31w −D33u1) dσ, M3 =
∫ ∫

σ

(G33 +D32u1 −D31u2) dσ.

[The principal moment in (2.1) is taken about the point X1 = X2 = X3 = 0.] Considering the equilibrium of the
region of the cylinder bounded by the lateral surface and the cross sections x3 = a and x3 = b (a and b are arbitrary
real numbers) in the same way as in [5], we obtain

F1 = F2 = M1 = M2 = 0. (2.2)

Equalities (2.2) imply that for strains of the form (1.4), (1.5) to occur, the ends of the cylinder should be loaded by
a system of forces and moments that is statically equivalent to the force F3 and the moment M3 applied to a point
on the X3 axis and directed along this axis. It is also assumed that the cross section of the bar σ possesses central
symmetry, i.e., it is brought into coincidence with itself by a rotation of 180◦ about the bar axis. An example is a
Z-shaped cross section is. Doubly-symmetric cross sections also belong to this class. Using the method of [3] and
assuming that the material is orthotropic, we can prove that the solutions of the two-dimensional boundary-value
problem (1.9), (1.10), (1.15) possess the following property:

Xα(−x1,−x2, x3) = −Xα(x1, x2, x3) (α = 1, 2). (2.3)

From (2.3) it follows that a horizontal cross section of the deformed bar also possesses central symmetry such that
the X3 axis, i.e., the line X1 = X2 = 0 passes through the centers of all cross sections. In a particular case where
the point x1 = x2 = 0 belongs to the region σ (i.e., the prismatic bar has no voids in the central part), relation (2.3)
implies that Xα(0, 0, x3) = 0 (α = 1, 2). This means that after torsion of the bar, the material straight line passing
through the centers of cross sections of the undeformed bar remains a straight line and intersects the horizontal
plane at the point x1 = x2 = 0.

Thus, for strains of the form (1.4), (1.5), the axial force F3 arising at the ends of the bar of central-symmetric
cross section passes through the cross-sectional center.

Once the two-dimensional boundary-value problem for the cross section is solved, the axial force and the
torsional moment become known functions of the parameters ψ and λ:

F3 = F (ψ, λ), M3 = M(ψ, λ). (2.4)

Inverting the functions F and M , one obtains the parameters ψ and λ for given values of the force F3 and the
moment M3.

We consider the functional Π of the specific free energy (the energy per unit length) of the elastic bar that
is calculated for the solution uα(x1, x2, ψ, λ), w(x1, x2, ψ, λ), H0(x1, x2, ψ, λ) of the two-dimensional problem (1.9),
(1.10), (1.15), (1.17) and depends on the parameters ψ and λ:
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Π(ψ, λ) =
∫ ∫

σ

W [uα(x1, x2, ψ, λ), w(x1 , x2, ψ, λ), H0(x1, x2, ψ, λ);ψ, λ] dσ. (2.5)

Relation (2.5) takes into account that according to (1.2), (1.6), and (1.7), the specific free energy depends on the
parameters ψ and λ not only in terms of the functions uα, w, and H0 but also explicitly. Using the method described
in a different context in [6], we can prove the following the energy relations of the nonlinear theory of torsion of
cylindrical bodies with moment stresses:

F =
∂Π(ψ, λ)

∂λ
, M =

∂Π(ψ, λ)
∂ψ

. (2.6)

Representations (2.6) describe the nonlinear interaction between axial and torsional strains in elastic cylinders
of micropolar materials and allow one, in particular, to study direct and inverse Pointing effects [7] in these cylinders.

3. Compatibility Equations and Stress Functions. We transform the boundary-value problem (1.9),
(1.10), (1.15), (1.17) for the prism cross section by eliminating the functions u1, u2, and w from it and using other
quantities as the primary unknowns. As a result, for Csk = is · C0 · ik, we obtain the following compatibility
equations for the strain-gradient components:

∂C32

∂x1
= ψC11,

∂C32

∂x2
= ψC21,

∂C31

∂x1
= −ψC12,

∂C31

∂x2
= −ψC22; (3.1)

∂C13

∂x2
=
∂C23

∂x1
. (3.2)

With allowance for (1.7), Eqs. (3.1) and (3.2) are written in invariant coordinate-free form

∇⊗ i3 · Y ·H0 · g = ψg · Y ·H0 · e; (3.3)

∇ · e · Y ·H0 · i3 = 0. (3.4)

Using (3.3) and (3.4), we can write the compatibility equations in any curvilinear coordinates introduced in the
region σ. Equations (3.3) and (3.4) supplemented by the equilibrium equations (1.9) and (1.10) and the relation
i3 · Y ·H0 · i3 = λ constitute a complete system of equations with unknown functions Y and H0. In this case, the
first constraint (1.17) is not required to formulate the two-dimensional boundary-value problem in terms of Y and
H0.

As in the nonlinear theory of torsion ignoring moment stresses [5], the system of equations comprising the
equilibrium and compatibility equations is appropriate for the case of a prismatic body with screw dislocations
whose axes are parallel to the x3 axis. The equilibrium conditions (1.11) for the force stresses can be satisfied
identically by using the substitution

Dαβ = ψΦαβ (α, β = 1, 2),

D13 =
∂Ω
∂x2

, D23 = − ∂Ω
∂x1

, D31 = −∂Φ12

∂x1
− ∂Φ22

∂x2
, D32 =

∂Φ11

∂x1
+
∂Φ21

∂x2
,

(3.5)

where Ω(x1, x2) and Φαβ(x1, x2) are stress functions. Expressions (3.5) are the general solution of Eqs. (1.11) since
the functions Φαβ(x1, x2) (α, β = 1, 2) are uniquely determined for the stressesDsk specified in the simply connected
region σ, whereas the function Ω is determined with accuracy up to an additive constant that has no effect on the
stresses in the body. For the simply connected region σ, the force boundary conditions (1.15) are written in terms
of the stress functions:

Ω = 0, nαΦαβ = 0 on ∂σ (nα = n · iα). (3.6)

Introducing the stress-function tensor Φ = Φαβiα ⊗ iβ (α, β = 1, 2), we write the general solution (3.5) of the force
equilibrium equations in invariant form

D0 = ψΦ + e · ∇Ω ⊗ i3 + i3 ⊗ (∇ · Φ) · e+D33i3 ⊗ i3. (3.7)

4. Variational Formulations of the Problem for the Cross Section. We consider the specific-energy
functional defined on the set of functions uα(x1, x2), w(x1, x2), and H0(x1, x2) that are twice-differentiable in the
region σ and satisfy conditions (1.17):
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Π[u1, u2, w,H0] =
∫ ∫

σ

W (Y, L) dσ. (4.1)

According to (1.6) and (1.7), the specific free energy W (Y, L) in (4.1) is expressed in terms of the functions u1, u2,
w, and H0. With allowance for (1.2) and (1.7), the variation of the functional (4.1) is given by

δΠ =
∫ ∫

σ

δW dσ,

δW = tr (Dt · grad δR) + tr [Dt · (gradR × χ)] + tr (Gt
0 · ∇χ) − ψi3 ·G0 · e · χ,

R = u1e1 + u2e2 + (λx3 + w)i3,

where χ(x1, x2) is the virtual-rotation vector defined by the relation Ht
0 · δH0 = −E × χ. One can verify that the

equilibrium equations (1.9) and (1.10) written in terms of the functions u1, u2, w, and H0 become Euler’s equations
of the variational problem of finding stationary values of the functional Π and the conditions on the lateral surface
of the prismatic bar (1.15) become the natural boundary conditions of this problem.

As in the problem of nonlinear pure bending of bodies with moment stresses [8], one can obtain a variational
formulation of the two-dimensional problem that is similar to the Castigliano principle in the classical theory of
elasticity.

We consider the class of materials whose specific potential strain energy can be written as

W (Y, L) = W1(Y ) +W2(L). (4.2)

Condition (4.2) is satisfied, for example, for a physically linear isotropic Cosserat continuum [2] whose elastic
potential is a quadratic form of the tensors Y − E and L:

W = (1/2)[λ0 tr2 ε+ (µ+ α) tr (ε · εt) + (µ− α) tr ε2

+β tr2 L+ (γ + η) tr(L · Lt) + (γ − η) trL2], ε = Y − E (4.3)

(λ0, µ, α, γ, β, and η are elastic constants). The absence of bilinear terms (i.e., terms that are linear in ε and
in L) in (4.3) is due to the fact that the flexural-strain measure L is a pseudotensor and changes sign for space
inversion. For materials possessing the property (4.2), Eq. (1.2) implies that the tensor P depends only on Y and
the tensor K depends only on L:

P (Y ) =
dW1(Y )
dY

, K(L) =
dW2(L)
dL

. (4.4)

Assuming that the relation P (Y ) can be inverted uniquely, we construct a function V1(P ) related to W1(Y ) by the
Legendre transformation:

V1(P ) = tr [P t · Y (P )] −W1(P ). (4.5)

According to the property of the Legendre transformation, we have

Y =
dV1

dP
. (4.6)

The function

V (P,L) = V1(P ) +W2(L) (4.7)

will be called the specific complementary energy of elastic materials having the property (4.2). Relations (4.4)–(4.7)
yield

Y =
∂V

∂P
, K =

∂V

∂L
. (4.8)

As an example, we consider the following expression for the function of the specific complementary energy of a
material with the potential (4.3):

V (P,L) = trP +
1 +m

8mµ
tr (P ·P t)− m− 1

8mµ
trP 2 − ν

4µ(1 + ν)
tr2 P +

1
2

[β tr2 L+(γ+ η) tr (L ·Lt)+ (γ− η) trL2],
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m =
λ0

µ
, ν =

λ0

2(λ0 + µ)
.

Because P = D0 ·Ht
0 for the torsion problem, according to (1.5), (1.7), and (1.8), and because the tensor L

is expressed in terms of H0 and ∇H0, the specific complementary energy can be regarded as a function of D0, H0,
and ∇H0.

In the torsion problem of a prismatic body with moment stresses, the Castigliano-type functional is given
by

Π1(Φ,Ω, D33, H0) =
∫ ∫

σ

V [D0(Φ,Ω, D33), H0, L(H0)] dσ. (4.9)

Expression (4.9) is based on representation (3.7) of the Piola stress tensor in terms of stress functions that identically
satisfy the force equilibrium conditions (1.9). The admissible stress functions should be twice differentiable and
satisfy boundary conditions (3.6), and the varied field of the orthogonal tensor H0 should satisfy the second relation
in (1.17).

With allowance for (4.8), the variation of functional (4.9) is written as

δΠ1 =
∫ ∫

σ

{
tr [(Y ·H0) · δDt

0] + (Ct
0 ·D0)× · χ + tr (Gt

0 · ∇χ) − ψi3 ·G0 · e · χ
}
dσ. (4.10)

From (3.7) and (4.10) it follows that the stationarity condition δΠ1 = 0 is equivalent to the compatibility equations
(3.3) and (3.4), the moment equilibrium equations (1.10), the relation λ = ∂V/∂D33, and the moment boundary
conditions (1.15).

The variational formulations considered above can be used to solve the two-dimensional problem for the
cross section of a prismatic body by the Ritz method or finite-element methods.

5. Torsion of a Circular Cylinder. We consider circular cylindrical coordinates: Lagrangian coordinates
r, ϕ, and z and Eulerian coordinates R, Φ, and Z. The following formulas are valid:

x1 = r cosϕ, x2 = r sinϕ, x3 = z,

X1 = R cosΦ, X2 = R sin Φ, X3 = Z.

Using cylindrical coordinates, we write the strain family (1.4), (1.5) for a Cosserat continuum in equivalent form

R = ρ(r, ϕ), Φ = ψz + v(r, ϕ), Z = λz + w(r, ϕ), H = H0(r, ϕ) ·Q(z). (5.1)

A particular case of representation (5.1) is the expression proposed in [9] for the torsional and axial tensile–
compressive strains of a circular cylinder:

R = ρ(r), Φ = ϕ+ ψz, Z = λz,

H = er ⊗ eR + cos τ(r)(eϕ ⊗ eΦ + ez ⊗ eZ) − sin τ(r)(ez ⊗ eΦ − eϕ ⊗ eZ),
(5.2)

er = i1 cosϕ+ i2 sinϕ, eϕ = −i1 sinϕ+ i2 cosϕ,

eR = i1 cosΦ + i2 sinΦ, eΦ = −i1 sin Φ + i2 cosΦ,

ez = eZ = i3.

As is proved in [9], the substitution (5.2) reduces the torsion problem for a circular (or hollow) cylinder made of an
isotropic polar material to a boundary-value problem for a system of two nonlinear ordinary differential equations
for the functions ρ(r) and τ(r). For the case of an incompressible isotropic Cosserat pseudocontinuum, according
to [9], the indicated problem admits an exact solution in quadratures.

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00638).
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